Search results for "non-covalent inhibitors"
showing 2 items of 2 documents
Exploring the non-covalent ligand-binding mechanism on immunoproteasome by enhanced Molecular Dynamics
2021
Selective inhibition of immunoproteasome is a valuable strategy to treat autoimmune and inflammatory diseases, and hematologic malignancies. In particular, non-covalent inhibition is strongly desirable because it is free of the drawbacks and side effects associated with covalent inhibition. Recently, a new series of amide derivatives with Ki values in the low/submicromolar ranges toward the β1i subunit have been identified as non-covalent inhibitors 1 . We investigated the binding mechanism of the most potent and selective inhibitor (1) to elucidate the steps from the ligand entrance into the binding pocket to the ligand-induced conformational changes. We carried out a total of 400ns of MD-…
Immunoproteasome and Non-Covalent Inhibition: Exploration by Advanced Molecular Dynamics and Docking Methods
2021
The selective inhibition of immunoproteasome is a valuable strategy to treat autoimmune, inflammatory diseases, and hematologic malignancies. Recently, a new series of amide derivatives as non-covalent inhibitors of the β1i subunit with Ki values in the low/submicromolar ranges have been identified. Here, we investigated the binding mechanism of the most potent and selective inhibitor, N-benzyl-2-(2-oxopyridin-1(2H)-yl)propanamide (1), to elucidate the steps from the ligand entrance into the binding pocket to the ligand-induced conformational changes. We carried out a total of 400 ns of MD-binding analyses, followed by 200 ns of plain MD. The trajectories clustering allowed identifying thre…